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A FULL QUANTUM THEORY OF THE THREE-MODE
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A full quantum treatment about the process of parametric down-conversion with frequency degenerate
but polarization non-degenerate in an optical parametric oscillator (OPO) cavity is presented. Using the
linearized Langevin equations and spectral matrix, we calculated the squeezing spectra of the coupled mode
in the output field. The squeezing as a function of driving field and detection frequency is obtained. The re-
sults obtained, which are compared with those found semiclassically by Reynaud ez al., indicate that it is
possible to generate a two-mode coherent squeezed state with large amplitude. The quantum correlation be-
tween the signal and the idler modes is also-discussed. It is shown that there is an inseparable relationship be-

tween the two-mode squeezing and the intermode quantum correlation.
PACC: 4250; 4265

I. INTRODUCTION

In recent years there has been great interest in nonctassical behaviours of the field in the
optical parametric oscillator (14 (OPO). The single mode squeezed vacuum state which has
70% of maximal squeezing has been achieved through the degenerate parametric down-con-
version ©°!. But to our knowledge, the full quantum treatment on the three-mode interactions

in an OPO cavity with a non-degenerate parametric process has not been discussed and this

kind of treatment is very important to recognize the field nonclassical characters in the OPO
cavity. In this paper, we calculate the squeezing spectrum of a coupled mode in output field
using the linearized Langevin equations and spectral matrices, and discuss the squeezing of
the coupled mode in detail. The quantum correlation between the signal and the idler modes

(¢ 1t is shown that there is an

is also discussed in terms of the definition given by Reid
inseparable relationship between the two-mode squeezing and the intermode quantum corre-

lation.

II. BASIC THEORY
A. Theoretical model and steady-state solutions

As shown in Fig. 1, a coherent pump field with a frequency w, is incident on a
Fabry-Perot cavity %ontaining a crystal with a significant second-order susceptibility which
converts the w, photons into the correlated pairs of photons with the same frequency
(w,=w,/ 2) and perpendicular polarizations, i. €., this is a process with frequency degenerate

but polarization non-degenerate. We assume that there is no mistuning of the cavity, then the
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. nonlinear
crystal

Fig. 1. The non-degenerate optical parametric oscillator. A pump field ¢, drives a cavity containing a nonlinear
crystal. Two photons with frequency degenerate but polarization non-degenerate are created from one w, photon.

Hamiltonian of the system can be written as follows:

H =Hrev+H‘ (1)

irrev ’

H.,= 2howa,a, +hwaya, +hoaja,+ih(c/ 2) (a,a,a;— a;a,as)
+ite[a)exp(—2iwt) — aexp Qiwt)] )

3
H = T '—aT) |,
urev '-Zl(al 1} al l) (3)

where H,,, refers to the reversible part of the interaction and H;. ., theirreversible part due
to cavity damping; a; and a,—+ are the annihilation and creation operators for mode i
(1=1,2,3, mode 1 is the pumping mode at frequency 2w, modes 2 and 3 are the signal and
idler modes, respectively); k is the coupling constant, which is proportional to the second or-
der susceptibility ¥® of the medium. r, F,—+ are heat bath operators which represent cavity
losses for the three modes, and ¢, is proportional to the coherent driving ﬁeld amplitude.
With the standard techniques to eliminate the heat baths, we obtain the master equation for
the reduced density operator p of the system

ap

3
1 + +
o =7 Hoe, o] l;‘y,.(Za,.pa,. a, a,p=pa; a)

3
+2Zyin:h(a‘.pai+—- pa:a‘.— ai+al.p+ a: pa,) , 4)

where 7; are the mode damping constants and n\" are the mean numbers of thermal photons
in the heat baths.
By means of generalization of the Glauber P representation developed by Drummond

and Gardiner, the equation can be converted to a c-number F okker-Planck equation:
SP(x)
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i=1 0. 0.
1 1
where 8= [a,, oc;', o, a2+, o3, a;].
An alternative way of examining the statistical behaviour is to use the stochastic equa-
tions of motion corresponding to Eq. (5), that is, the Langevin equations

a, €, Yo, T Koo 0 T, 0 0 0 0 n,()
+
af | |e,—va —xe ] | [T, 0 0 0 0 0 |[n ®
. o, - Y,0, Kaloz; 0 0 0 r, «xa 0 1,(2)
_t + - + + + : + + ’ (©)
® o, - y,a, T K& A, 0 0 T, 0 0 ko, n, (1)
o, -y, xala; 0 0 xa 0 0 T, UNG)
+
a; - )’301; - xa:az 0o 0 0 xar r, 0 n, (2)

where I';= Zn?' Y; n{t) and r[,«+ (2) are delta-correlated stochastic forces with zero mean
< n > =< 7> =0,

< om@ ey > = 8y ) . (M

Ignoring the stochastic forces 1{?), r],-+ (#) and the stochastic nature of the a;, we can obtain
the steady-state solutions of Eq. (6)

0 0 0 thres.
|al|—el/vl, |a2|—|a3|—0 ) (e, < ¢ ) ()
and
0 0 0 thres. thres.
|0 | =900, Jas] =l =Ne,—e™e, €= . o
where "

= 9,7,/ K is the threshold driving field, and y,=7; is assumed, i.e., both the sig-
nal and the idler modes have the same damping.

B. The fluctuation spectra of the coupled mode

In this section, we shall deal with the case in which there are small fluctuations around
the steadystates. Taking the first order approximation of the expansion around the
steady-state solutions, the Langevin equations are linearized



No.2 ‘ A Full Quantum Theory of the Three-M ode«+- ' 97

:—t [5a] = A[aa] +p"? [rr(t)] , (10)

where
-y, 0 = Kag 0 - xa: 0
0 -7, 0 - xag' 0 - xao‘
Koty 0 -7, 0 0 - xa
A= , o R (11)
0 Ko 0 -7, Ka 0
e 0 0 Ka' -7, 0
0 Ko xa(:' 0 0 -7,
0o 224" 0 0 0 0
2,87 0 0 0 0 0
0 0 0 Zyzn;h xa‘: 0
D= N ' o , (12)
0 0 2y,n, 0 0 Ko,
0 0 ka0 0 2y,n;
0 0 0 xa 27,m) 0
oo, n,(t)
s n, ()
oo, n,(t)
Pad=| | » [moI=| (13)
oa, n, (1)
da 1,()
sa. n, ()

A and D are the drift and diffusion matrices respectively. The spectral matrix S(v) is

defined as the Fourier transform of the correlation matrix which consists of the normally or-

dered two time-correlation functions. The relation between the correlation matrices 4 and D

is[ﬂ

S(v) = A Hv) ' DUAT-v) "

where 7 s the identity matrix and T stands for transpose.

The coupled mode is defined as

(14)
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d=(a,+a)/ N2 , d =@, +a] )y V2 , (15)

2

and its quadrature components are

s

D, =0/ 2V2) (a,+a,+a, +a,)
D_ =0/ N2i)(@a,+a,—a, —a]) . (16)

For a single-ended cavity, the two time-correlation functions for the output field can be
calculated directly from correlation functions of the stochastic variables describing the inter-

nal field®. Then one can get the fluctuation spectra of the coupled mode in the output field

- out

Sp+ =Ty, [S,+8,%s, £s, +S8,+8, irS54 ts,,

TS S+, +S, ES, ES +S +S5 )4 . (7)

Below the oscillating threshold, we have the squeezing spectrum of component D—;

0 2 02 2 2 2 02
Y, ke (k a +y,tv)— 2k a v,

Spe () == e Y aa (18)
and above the oscillating threshold, we have similarly
0 2 2 2 2
S =1, xa,[(A,+RBZIi—IZ(AZ+BZ)] , )
where
4= kel 2P 0 el ) el (20
B, = ka3 (7)) (B A1+ 2R, -2y 2
A= (N)13-379)-27V° B By () 27,071+ 2,08
—K*n0ay e [r ()29 )
B, = (1—)373v—) 129, 9(13-37,v) 83263227, 7,y () ]+ 2oy
—x"a?zagzv—xza?zl(ﬁ—vz)v+2y1y2v] s (23)

R = 71749770V 87,7,V ,02 (9,1, 4230, 1) P 4Py, (13=37,07)
24
VBB e () ey, el @9

I = 4y,,75,7y +2'Y1V(7§2_47§V2)_4K2“?2V(7'1 +72)(7n72_"2) '*'47(2“22( 3')’1'}’%—'}’1"2 +yg—3'y2v2)v

"'8"4“24')’2"_4"4“?2“(2)2(71 v +2 Kd“?‘)’l v (25)

and y,, = yf—vz; Va2 = y%—vz. a? and ag are given by Egs. (8) and (9).
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Figures 2 and 3 are, respectively, the squeezing spectra of the coupled mode when the
pump field is below or above the threshold. At v=0 and ¢, =slm“, S, au;m

sponds to the perfect squeezing case.

—1/ 4 corre-

Sout

Fig. 2. The squeezing spectrum of the coupled mode with different driving field below threshold for y, =10, y,=1
and k=35.
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Fig. 3. The squeezing spectrum of the coupled mode with different driving field above threshold for y, =10, y,=1
and k=35.

In Fig.4, we plot the fluctuation < (AD_)2> as a function of frequency v and the pump
field ¢,. As the pump field increases, at first the squeezing increases from zero and quickly
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reaches a maximum at the threshold, while the coupled mode is in the two-mode squeezed
vacuum state, then if the pump field increases continuously, the squeezing will decrease grad-

ually while the coupled mode is in the two-mode squeezed coherent state.
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Fig. 4. Variation of the quadrature amplitudes of the coupled mode < (AD_)*> as a function of the dimensionless

frequency v /7, and the driving field ¢, for y,= 10, 7,=1and k=5.
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Fig. 5. Variation of the quadrature amplitudes of Fig. 6. Variation of the quadrature amplitudes of the
the coupled mode < (A D_)*> as a function of the coupled mode < (AD_)2> as a function of 7, of the signal
pump field &, (solid line). The dashed line is the re- mode at threshold. (y, =10, k=5, v=1)

sult given by Reynaud et al. using the semiclassical

treatment. (y, =10, y,=1 and k =5)

Figure 5 shows the variation of the squeezing versus the pump field, and the result of the
semiclassical treatment obtained by Reynaud et al'” is also given here for comparison. It
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shows that both curves are almost the same below the threshold but are quite different above
the threshold. The decrease of the squeezing above the threshold is not as fast as predicted by
Reynaud, and there is still about 57 % squeezing at a field of double threshold.

In Fig. 6, we plot the squeezing as a function of the damping of signal at a fixed frequen-
cy and at the threshold. Here we consider only the damping caused by the output mirror, i.e.,
Y2=7Vou- When the pump field is at the threshold, the larger the damping, the deeper the
squeezing. But this effect is obvious only at very high frequency. Usually it will easily be satu-
rated. Therefore, it is not realizable to increase the squeezing by increasing the damping of the
output mirror and the pumping power.

C. The quantum correlation between the signal and idler modes

In the process of non-degenerate polarization, the signal and the idler modes themselves
are not squeezed but their coupling mode is. This shows that the quantum correlation be-
tween the signal and idler modes plays a crucial role in the squeezing of the light fields. Ac-
cording to the definition given by Reid'®, we obtain the quantum correlation between the sig-
nal and idler modes

| < X, X,> |
Cc= 5 B ) (26)
\/ (< X,> < X;>)
where X,=a,+a,; X;=a;+a; .
For the case the light field is below the threshold, from Eq. (14) we have
0 2 2 2 2
41cal}'2(A 6 + 863 + A4 . + B33)
¢= 0 2 2 7
8xa1yz(A 3 A33 + Bes B33)+ Dl + D2
where
28
A= k()M K —daly 7y 28)
B¢ = 2xa?y2v(yf—v2) +2xa?y,v()’§—v2—xza?z) s (29)
A3 = )2y X~ D) -2y (1) 297 (30)
_ P NP M S 22202 (31)
B33 = 2yv[1,(7 )2y vIHG ) Ry vl v KT ) v,
(32)

D, = M)V =Ko~y
~ 33
D, = 29,y(y1—) Ry v(r—v—a?) . (33)
Similarly, for the field above the threshold, we have
0 2 2 2 2
_ 4xa,y,(4,+B +4,+8)
8ka,7,(4 4, +B B)+R +1I'

(34)
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P

where 4, A,, B, B, R and I are given by Egs. (20)—(25), and a?, ag are given by Egs. (8) and
9. ‘ |
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Fig. 7. The quantum correlation between the signal Fig. 8. The quantum correiation between the signal and
and the idler modes versus the pump field &,. the idler modes versus the dimensionless frequency v / 7,
1, =10,7,=1,k=5,v=0.5) (7, =10,7,=1, k=35,¢=2.5)

The relationship between the quantum correlation and the pump field at a fixed frequen-
cy is depicted in Fig. 7, which shows that the quantum correlation is maximum at the thresh-
old and grédually decreases as the field increases above the threshold, but the decrease of the
correlation is much slower, as compared with that of the squeezing.

Figure 8 shows the quantum correlation as a function of the noise spectrum frequency v.
The perfect squeezing corresponds to v =0, C=1; and the quantum correlation reduces along
with the increase of frequency. Generally, one can obtain a two-mode squeezed coherent state
with considerable squeezing and quantum correlation in a quite wide bandwidth of frequency.
The quantum correlation between the two modes expresses the characterisitics of the light
field on a deeper level.

[I1. CONCLUSION

We have discussed the squeezing of the coupled mode in the output field for the process
of the parametric down-conversion with its frequency degenerate but polarization non-degen-
erate. The coupled mode can be perfectly squeezed at the threshold. The decrease of squeezing
above the threshold field is slower than that given according to the semiclassical treatment .
(Ref. [9]), and there is about 57% squeezing at the double threshold field. The result shows
that it is possible to generate a two-mode squeezed coherent state with large amplitude.

We obtained the quantum correlation as a function of the noise frequency and the pump
field. The maximum of the quantum correlation occurs at v=0 and ¢, =g | and the
quantum correlation gradually decreases as the pump field continuously increases above the
threshold. But in a quite wide bandwidth the coupled mode still has very strong quantum COr-

relation, if only the pump field is not too strong as compared with the threshold (for example

g,/ €™ =1.5). The results indicate that it is very favourable to realize the quantum

non-demolition measurement by the nonlinear process.
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